

III Semester B.A./B.Sc. Examination, November/December 2017 (Semester Scheme) (CBCS) (F+R) (2015-16 and Onwards) MATHEMATICS – III

Time: 3 Hours

Max. Marks: 70

Instruction : Answerall questions.

PART-A

1. Answer any five questions :

(5×2=10)

- a) Find the number of generators of the cyclic group of order 30.
- b) Define right coset and left coset of a group.
- c) Show that the sequence $\left\{\frac{1}{n}\right\}$ is monotonically decreasing sequence.
- d) State Raabe's Ratio test for convergence.
- e) Test the convergence of the series :

 $1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} + \dots$

- f) Verify Rolle's theorem for the function $f(x) = x^2 6x + 8$ in [2, 4].
- g) State Cauchy's mean value theorem.

h) Evaluate $\lim_{x \to 0} \left(\frac{1 - \cos x}{x^2} \right)$.

PART-B concepted and enimexel (a

Answer one full question :

(1x15=15)

- 2. a) If 'a and x' are any two elements of a group G then prove that $O(a) = O(x a x^{-1})$.
 - b) Let G be a cyclic group of order d and 'a' be a generator, then prove that the element $a^{k}(k < d)$ is also a generator of G if and only if (k, d) = 1.
 - c) State and prove Fermat's theorem for groups.

OR

SN-351

 $(2 \times 15 = 30)$

- a) Prove that if 'a' is any element of a group G of order n then a^m = e for any integer m if and only if n divides m.
 - b) Prove that every sub group of a cyclic group is cyclic.
 - c) Prove that every group of order less than or equal to 5 is abelian.

PART-C

Answer two full questions :

4. a) Prove that the sequence
$$\left\{\frac{2n-7}{3n+2}\right\}$$

- i) is monotonically increasing
- ii) is bounded.
- b) Prove that a monotonic increasing sequence bounded above is convergent.
- c) Show that the sequence $\{x_n\}$ where $x_1 = 1$ and $x_n = \sqrt{2 + x_{n-1}}$ is convergent and converges to 2.

OR

5. a) Show that $\{a_n\} = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ is convergent.

b) Discuss the nature of the sequence $\{x^{\frac{1}{n}}\}$, x > 0.

c) Examine the convergence of the sequences :

(1×15=15) if a and x' are any two elements of a group G then prove that $O(a) = O(x a x^{-1})$.

ii) $\left\{\frac{2n^2+3n+5}{n+3}\right\}\sin\left(\frac{\pi}{n}\right)$.

6. a) State and prove D'Alemberts Ratio test for series of positive terms.

b) Test the convergence of the series $1 + \frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \dots$

- c) Sum the series to infinity $\frac{1}{5} \frac{1.4}{5.10} + \frac{1.4.7}{5.10.15} \frac{1.4.7.10}{5.10.15.20} + \dots$
- 7. a) State and prove Cauchy's Root test for the convergence of series of positive terms.
 - b) Test the convergence of the series $\sum \frac{1.2.3....n}{3.5.7.9....(2n + 1)}$.
 - c) Sum the series to infinity $\frac{1}{6} + \frac{1.4}{6.12} + \frac{1.4.7}{6.12.18} + \dots$

OR

Answer one full question :

8. a) Prove that a function, which is continuous in a closed interval, takes every value between its bounds at least once.

b) Evaluate
$$\lim_{x \to 0} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}}$$
.

c) Evaluate $\lim_{x \to 0} (1 + \sin x)^{\cot x}$.

OR

- 9. a) Examine the differentiability of the function $f(x) = \begin{cases} x^2 1; & \text{for } x \ge 1 \\ 1 x; & \text{for } x < 1 \end{cases}$ at x = 1.
 - b) State and prove Lagranges Mean value theorem.
 - c) Expand the function $\log_e(1 + x)$ up to the term containing x^4 by Maclaurin's expansion.

$$(1 \times 15 = 15)$$