V Semester B.A./B.Sc. Examination, November/December 2017
 (Semester Scheme) (CBCS) (2016-17 \& Onwards)
 (Fresh + Repeaters)
 MATHEMATICS - V

Time : 3 Hours
Max. Marks : 70
Instruction : Answer all questions.
PART-A

Answerany five questions :
1 a) In a ring $(R,+, \cdot)$ prove that $\forall a, b, c \in R, a \cdot(b-c)=a \cdot b-a \cdot c$.
b) Show that the set of even integers is not an ideal of the ring of rational numbers.
c) Prove that every field is a principal ideal ring.
d) If $\vec{F}=y z \hat{i}+z x \hat{j}+x y \hat{k}$, show that \vec{F} is irrotational.
e) Find the maximum directional derivative of $x \sin z-y \cos z$ at $(0,0,0)$.
f) Prove that $E \nabla=\nabla E=\Delta$.
g) Construct the Newton's divided difference table for the following data :

x	4	7	9	12
$f(x)$	-43	83	327	1053

h) Using Trapezoidal rule to evaluate $\int_{0}^{1} \frac{d x}{1+x}$ where

x	0	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	1
$y=f(x)$	1	0.8571	0.75	0.6667	0.6	0.5455	0.5

P.T.O.

Answer two full questions :
2. a) Prove that the set $R=\{0,1,2,3,4,5\}$ is a commutative ring with respect to ' \oplus_{6} ' and ' \otimes_{6} ' as the two compositions.
b) Prove that a ring R is without zero divisors if and only if the cancellation laws hold in R

> OR
3. a) Show that an ideal S of the ring of integers $(z,+, \bullet)$ is maximal if and only if S is generated by some prime integer.
b) Prove that a commutative ring with unity is a field if it has no proper ideals.
4. a) If R is a ring and $a \in R$, let $I=\{x \in R / a x=0\}$ prove that I is a right ideal of R.
b) If $f: R \rightarrow R^{\prime}$ be a homomorphism with kernel K, then prove that f is one-one if and only if $\mathrm{K}=\{0\}$.

OR
5. a) Let $R=R^{\prime}=C$ be the field of complex numbers. Let $f: R \rightarrow R^{\prime}$ be defined by $f(z)=\bar{z}$ where \bar{z} is the complex conjugate of z, show that f is an isomorphism.
b) Prove that every homomorphic image of a ring R is isomorphic to some residue class (quotient) ring thereof.
PART-C

Answer two full questions :
6. a) Prove that $\nabla^{2}(f(r))=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$, where $r^{2}=x^{2}+y^{2}+z^{2}$.
b) Find the unit normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point $(1,2,-1)$.
7. a) Show that Curl $[\vec{r} \times(\vec{a} \times \vec{r})]=3 \vec{r} \times \vec{a}$ where \vec{a} is constant vector and

$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k} .
$$

b) If the vector $\vec{F}=(3 x+3 y+4 z) \hat{i}+(x-a y+3 z) \hat{j}+(3 x+2 y-z) \hat{k}$ is solenoidal, find ' a '.
8. a) Prove that $\nabla^{2}\left(\frac{1}{r}\right)=0$, where $r^{2}=x^{2}+y^{2}+z^{2}$.
b) If $\vec{F}=\nabla\left(2 x^{3} y^{2} z^{4}\right)$, find Curl \vec{F} and hence verify that $\operatorname{Curl}(\nabla \phi)=0$.

OR

9. a) If ϕ is a scalar point function and \vec{F} is a vector point function, prove that
$\operatorname{div}(\phi \vec{F})=\phi \operatorname{div} \vec{F}+\operatorname{grad} \phi \cdot \vec{F}$
b) Find Curl (Curl \vec{F}) if $\vec{F}=x^{2} y \hat{i}-2 x z \hat{j}+2 y z \hat{k}$.
PART-D

Answer two full questions :
$(2 \times 10=20)$
10. a) Use the method of separation of symbols to prove that

$$
\begin{aligned}
& u_{0}+u_{1} x+u_{2} x^{2}+\ldots \text { to } \infty \\
& =\frac{u_{0}}{1-x}+\frac{x \Delta u_{0}}{(1-x)^{2}}+\frac{x^{2} \Delta^{2} u_{0}}{(1-x)^{3}}+\ldots \text { to } \infty
\end{aligned}
$$

b) i) Evaluate $\Delta^{10}\left[(1-a x)\left(1-b x^{2}\right)\left(1-c x^{3}\right)\left(1-d x^{4}\right)\right]$.
ii) Express $f(x)=3 x^{3}+x^{2}+x+1$ as a factorial polynomial (taking $h=1$).
11. a) Find a second degree polynomial which takes the following data :

\mathbf{x}	1	2	3	4
$f(x)$	-1	-1	1	5

b) Find $f(1.9)$ from the following table :

\mathbf{x}	1	1.4	1.8	2.2
$f(x)$	2.49	4.82	5.96	6.5

12. a) Using Lagrange's interpolation formula find $f(6)$ for the following data :

\mathbf{x}	2	5	7	10	12
$f(x)$	18	180	448	1210	2028

b) Using Simpson's $\frac{3^{\text {th }}}{8}$ rule evaluate $\int_{0}^{0.6} e^{-x^{2}} d x$ by taking 6 sub intervals.
OR
13. a) Following is the table of the normal weights of babies during the first few months of life.

Age in months	2	5	8	10	12
Weight in kgs	4.4	6.2	6.7	7.5	8.7

Estimate the weight of a baby of 7 months old using Newton's divided difference table.
b) Obtain an approximate value of $\int_{0}^{6} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by Simpson's $\frac{1^{\text {rd }}}{3}$ rule.

