V Semester B.A./B.Sc. Examination, November/December 2017 (Semester Scheme) (CBCS) (2016 - 17 & Onwards) (Fresh + Repeaters) MATHEMATICS – V

Time : 3 Hours Max. Marks : 70

Instruction : Answer all questions.

Answer any five questions :

 $(5 \times 2 = 10)$

- 1 a) In a ring $(R, +, \cdot)$ prove that $\forall a, b, c \in R, a \cdot (b c) = a \cdot b a \cdot c$.
 - b) Show that the set of even integers is not an ideal of the ring of rational numbers.
 - c) Prove that every field is a principal ideal ring.
 - d) If $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$, show that \vec{F} is irrotational.
 - e) Find the maximum directional derivative of xsinz ycosz at (0, 0, 0).
 - f) Prove that $E\nabla = \nabla E = \Delta$.
 - g) Construct the Newton's divided difference table for the following data :

x	4	7	9	12	
f(x)	- 43	83	327	1053	

h) Using Trapezoidal rule to evaluate $\int_{0}^{1} \frac{dx}{1+x}$ where

x	0	1/6	2/6	3/6	4/6	5/6	1
y = f(x)	1	0.8571	0.75	0.6667	0.6	0.5455	0.5

P.T.O.

PART-B

-2-

Answer two full questions :

- (2×10=20)
- 2. a) Prove that the set R = {0, 1, 2, 3, 4, 5} is a commutative ring with respect to $`\oplus_6`$ and $`\otimes_6`$ as the two compositions.
 - b) Prove that a ring R is without zero divisors if and only if the cancellation laws hold in R

OR

- 3. a) Show that an ideal S of the ring of integers (z, +, •) is maximal if and only if S is generated by some prime integer.
 - b) Prove that a commutative ring with unity is a field if it has no proper ideals.
- 4. a) If R is a ring and $a \in R$, let $I = \{x \in R/ax = 0\}$ prove that I is a right ideal of R.
 - b) If $f : R \to R'$ be a homomorphism with kernel K, then prove that f is one-one if and only if $K = \{0\}$.

OR

- 5. a) Let R = R' = C be the field of complex numbers. Let f : R → R' be defined by f(z) = z where z is the complex conjugate of z, show that f is an isomorphism.
 - b) Prove that every homomorphic image of a ring R is isomorphic to some residue class (quotient) ring thereof.

PART-C

(2×10=20)

Answer two full questions :

- 6. a) Prove that $\nabla^2(f(r)) = f''(r) + \frac{2}{r}f'(r)$, where $r^2 = x^2 + y^2 + z^2$.
 - b) Find the unit normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1, 2, -1). OR

13. a) Following is the table of the no

 $(2 \times 10 = 20)$

- 7. a) Show that $\operatorname{Curl}\left[\vec{r} \times (\vec{a} \times \vec{r})\right] = 3\vec{r} \times \vec{a}$ where \vec{a} is constant vector and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
 - b) If the vector $\vec{F} = (3x + 3y + 4z)\hat{i} + (x ay + 3z)\hat{j} + (3x + 2y z)\hat{k}$ is solenoidal, find 'a'.
- 8. a) Prove that $\nabla^2 \left(\frac{1}{r}\right) = 0$, where $r^2 = x^2 + y^2 + z^2$.
 - b) If $\vec{F} = \nabla (2x^3 y^2 z^4)$, find Curl \vec{F} and hence verify that Curl $(\nabla \phi) = 0$. OR
- 9. a) If ϕ is a scalar point function and \vec{F} is a vector point function, prove that

div
$$(\phi \vec{F}) = \phi \operatorname{div} \vec{F} + \operatorname{grad} \phi \cdot \vec{F}$$

b) Find Curl (Curl \vec{F}) if $\vec{F} = x^2 y_{\hat{i}} - 2xz_{\hat{j}} + 2yz\hat{k}$.

Answer two full questions :

10. a) Use the method of separation of symbols to prove that

$$u_0 + u_1 x + u_2 x^2 + \dots t_0 \infty$$

$$= \frac{u_0}{1-x} + \frac{x \Delta u_0}{(1-x)^2} + \frac{x \Delta u_0}{(1-x)^3} + \dots \text{ to } \infty.$$

- b) i) Evaluate $\Delta^{10} [(1 ax) (1 bx^2) (1 cx^3) (1 dx^4)].$
 - ii) Express $f(x) = 3x^3 + x^2 + x + 1$ as a factorial polynomial (taking h = 1). OR

11. a) Find a second degree polynomial which takes the following data :

X	1	2	3	4
f(x)	-1	-1	1	5

b) Find f(1.9) from the following table :

X	1	1.4	1.8	2.2	IV
f(x)	2.49	4.82	5.96	6.5	

12. a) Using Lagrange's interpolation formula find f(6) for the following data :

X	2	5	7	10	12
f(x)	18	180	448	1210	2028

- b) Using Simpson's $\frac{3}{8}^{\text{th}}$ rule evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 sub intervals.
- 13. a) Following is the table of the normal weights of babies during the first few months of life.

Age in months	2	5	8	10	12
Weight in kgs	4.4	6.2	6.7	7.5	8.7

Estimate the weight of a baby of 7 months old using Newton's divided difference table.

b) Obtain an approximate value of $\int_{0}^{6} \frac{dx}{1+x^{2}}$ by Simpson's $\frac{1}{3}^{rd}$ rule.