VI Semester B.A./B.Sc. Examination, May/June 2018
 (CBCS) (2016-17 and Onwards) (Semester Scheme) (Fresh + Repeaters)

 MATHEMATICS - VIII

 MATHEMATICS - VIII}

Time: 3 Hours

Instruction: Answer all the questions/Parts.
PART-A

Answer any five questions :

1. a) Evaluate $\lim _{z \rightarrow-i} \frac{z^{2}+1}{z^{6}+1}$.
b) Prove that $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic.
c) Define an analytic function and give an example.
d) Define bilinear transformation.
e) Show that $f(z)=\cos z$ is analytic.
f) State Liouvilles' theorem.
g) Find the real root of the equation $x^{3}-9 x+1=0$ in $(2.9,3)$ by bisection method.
h) Using Newton-Raphson method, find the real root of $x^{2}+5 x-11=0$ in $(1,2)$ in one iteration only.
PART-B

Answer four full questions :

$(4 \times 10=40)$
2. a) Show that $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$ represents a circle.
b) Prove that the necessary condition for a function $f(z)=u(x y)+i v(x y)$ to be analytic is $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.

OR
3. a) Evaluate $\lim _{z \rightarrow 1+i}\left[\frac{z^{2}-z+1-i}{z^{2}-2 z+2}\right]$.
b) Show that $\mathrm{f}(\mathrm{z})=\mathrm{ze}$ is analytic.
4. a) Find the analytic function $f(z)=u+i v$ given that $u-v=e^{x}$ (cosy $-\sin y$).
b) Find the orthogonal trajectories of the family of curves $2 e^{-x} \sin y+x^{2}-y^{2}=c$.
5. a) If $f(z)=u+i v$ is analytic and ϕ is any differentiable function of x and y, show that $\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}=\left[\left(\frac{\partial \phi}{\partial u}\right)^{2}+\left(\frac{\partial \phi}{\partial v}\right)^{2}\right]\left|f^{\prime}(z)\right|^{2}$.
b) Show that $u=x^{3}-3 x y^{2}$ is harmonic and find its harmonic conjugate.
6. a) Evaluate $\int^{(2,5)}(3 x+y) d x+(2 y-x) d y$ along
$(0,1)$
i) The curve $y=x^{2}+1$.
ii) The line joining $(0,1)$ and $(2,5)$.
b) State and prove fundamental theorem on algebra.
OR
7. a) Evaluate $\int_{C} \frac{\sin \left(\pi z^{2}\right)+\cos \left(\pi z^{2}\right)}{(z-1)(z-2)} d z$ where C is a circle $|z|=3$.
b) State and prove Cauchy's integral theorem.
8. a) Prove that the Bilinear transformation preserves the cross ratio.
b) Discuss the transformation $w=z^{2}$.

OR
9. a) Find the bilinear transformation which maps $z=0,-i,-1$ on to $w=i, 1,0$ respectively.
b) Show that the transformation $w=\frac{i-z}{i+z}$ makes the x-axis of the z-plane on
to a circle $|w|=1$ and the points in the half plane $y>0$ on the points $|w|<1$.

PART - C

Answer two full questions.
10. a) Find the root of the equation $x^{3}-4 x+1=0$ over $(0,1)$ by Regula-Falsi method.
b) Find the cube root of 24 , correct to three decimal places by Newton-Raphson method.

OR

11. a) Solve the equation

$$
x+y+54 z=110
$$

$27 x+6 y-z=85$
$6 x+15 y+2 z=72$ by Gauss-Seidel method.
b) Find the largest eigen value of the matrix and its corresponding eigen vector

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -4 & 2 \\
0 & 0 & 7
\end{array}\right] \text { by power method. }
$$

12. a) Find the solution of $\frac{d y}{d x}=x y$ with $y(2)=2$ at $x=2.1$ correct to four decimal places, using Taylor series.
b) Solve $\frac{d y}{d x}=\frac{y-x}{y+x}$ with $y(0)=1$ for $x=0.1$ by Euler's method.
OR
13. a) Solve $\frac{d y}{d x}=x+y$ with $y(0)=1$ for $x=0.1$ using Euler's modified method.
b) Solve $\frac{d y}{d x}=x y$ given $y(1)=2$ at $x=1.2$ by Runge-Kutta method.
